Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria.
نویسندگان
چکیده
ATP dependent proteolytic degradation of misfolded proteins in the mitochondrial matrix is mediated by the PIM1 protease and depends on the molecular chaperone proteins mt-hsp70 and Mdj1p. Chaperone function is essential to maintain misfolded proteins in a soluble state, a prerequisite for their degradation by PIM1 protease. In the absence of functional mt-hsp70 or Mdj1p misfolded proteins either remain associated with mt-hsp70 or form aggregates and thereby are no longer substrates for PIM1 protease. Mdj1p is shown to regulate the ATP dependent association of an unfolded polypeptide chain with mt-hsp70 affecting binding to as well as release from mt-hsp70. These findings establish a central role of molecular chaperone proteins in the degradation of misfolded proteins by PIM1 protease and thereby demonstrate a functional interrelation between components of the folding machinery and the proteolytic system within mitochondria.
منابع مشابه
LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins
Maintenance of mitochondrial protein homeostasis is critical for proper cellular function. Under normal conditions resident molecular chaperones and proteases maintain protein homeostasis within the organelle. Under conditions of stress however, misfolded proteins accumulate leading to the activation of the mitochondrial unfolded protein response (UPR(mt)). While molecular chaperone assisted re...
متن کاملMitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease
Proteins in a natural environment are constantly challenged by stress conditions, causing their destabilization, unfolding, and, ultimately, aggregation. Protein aggregation has been associated with a wide variety of pathological conditions, especially neurodegenerative disorders, stressing the importance of adequate cellular protein quality control measures to counteract aggregate formation. T...
متن کاملIdentification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1.
ATP-dependent proteases are currently emerging as key regulators of mitochondrial functions. Among these proteolytic systems, Pim1, a Lon-like serine protease in Saccharomyces cerevisiae, is involved in the control of selective protein turnover in the mitochondrial matrix. In the absence of Pim1, yeast cells have been shown to accumulate electron-dense inclusion bodies in the matrix space, to l...
متن کاملCooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling
BACKGROUND Molecular chaperones recognize nonnative proteins and orchestrate cellular folding processes in conjunction with regulatory cofactors. However, not every attempt to fold a protein is successful, and misfolded proteins can be directed to the cellular degradation machinery for destruction. Molecular mechanisms underlying the cooperation of molecular chaperones with the degradation mach...
متن کاملProtein Quality Control by Molecular Chaperones in Neurodegeneration
Protein homeostasis (proteostasis) requires the timely degradation of misfolded proteins and their aggregates by protein quality control (PQC), of which molecular chaperones are an essential component. Compared with other cell types, PQC in neurons is particularly challenging because they have a unique cellular structure with long extensions. Making it worse, neurons are postmitotic, i.e., cann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 13 21 شماره
صفحات -
تاریخ انتشار 1994